UK data for geothermal resource assessments

Jon Busby
UK data for geothermal resource assessments

Outline

1. Data availability
2. Sub-surface temperatures
3. The EGS resource
4. Deep saline aquifers

Publicly funded UK geothermal projects

Rosemanowes HDR project (1977-1991) – funded by the UK Department of Energy and the European Commission (Camborne School of Mines)

Atlas of geothermal resources in Europe: UK revision (1995) – EU Joule II project (BGS)
Data availability

Geological mapping started in England over 200 years ago and since then there has been extensive onshore exploration for minerals, coal, oil, gas and geothermal resources.

Geological maps at a scale of 1:50k exist for all areas and 1:10k mapping is widely available.

3D models are produced at a scale of 1:250k for regional areas.
Data availability

Seismic reflection lines

Regions underlain by sedimentary basins have good coverage

Gravity data (~ 1 station per sq km)

Magnetic data
There are over a million onshore boreholes, although most are very shallow.

There are 1765 boreholes over 1 km deep.

There are over 544 sites with a downhole temperature 1 km or deeper.

18,000 borehole geochemical samples
Measured temperatures at 1 km below ground level, the median temperature is 38 °C.

Measured temperature vs depth for over 2600 temperatures from over 1150 sites.

Estimated temperatures at a depth of 7 km.
Temperatures at depth are determined by the heat flow and the thermal conductivities of the strata.

184 observed heat flow measurements based on equilibrium temperatures and laboratory thermal conductivities.

504 estimated heat flows based on corrected BHTs and estimated thermal conductivities.
The distribution of the heat flow measurements is very uneven. Most boreholes were drilled for oil, gas or coal. Scotland, Wales and parts of eastern England are very poorly sampled.
The EGS resource

Heat flow

• Heat flow values peak over the radiogenic granites with values up to 130 mW m$^{-2}$.

• Elsewhere, an average of 58 ± 16 mW m$^{-2}$.

• Average UK geothermal gradient is 26° C per km, but locally it can be in excess of 35° C per km.
The EGS resource

Enhanced temperatures at depth are most likely to be associated with the radiogenic granites.

Outcrops of granite occur in
- The southwest of England
- Northern England
- Scotland
- Northern Ireland
The EGS resource

The subsurface distribution of granite has been derived from interpretations of gravity data.

Most outcropping granites have been geochemically sampled from surface and borehole samples.

High heat producing granites occur in:
- The eastern Highlands batholith
- Lake district and northern England
- Cornubian batholith (SW England)

The Accessible Resource Base for EGS has been estimated as 3.58×10^{10} TJ.
The EGS resource

East Grampians batholith found to have high heat production, but low heat flow.

<table>
<thead>
<tr>
<th>Region</th>
<th>Heat production (μW/m³)</th>
<th>Heat flow (mW/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Grampians</td>
<td>6.5</td>
<td>68.9</td>
</tr>
<tr>
<td>Northern England</td>
<td>4.1</td>
<td>84.8</td>
</tr>
<tr>
<td>South-west England</td>
<td>4.7</td>
<td>119.6</td>
</tr>
</tbody>
</table>

Palaeoclimate corrections have been applied to the East Grampian heat flow boreholes with an estimated surface temperature model dating back 160k years.

<table>
<thead>
<tr>
<th>Location</th>
<th>Uncorrected (mWm⁻²)</th>
<th>Corrected (mWm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ballater</td>
<td>74</td>
<td>94</td>
</tr>
<tr>
<td>Benachie</td>
<td>86</td>
<td>109</td>
</tr>
<tr>
<td>Cairngorm</td>
<td>71</td>
<td>91</td>
</tr>
<tr>
<td>Mount Battock</td>
<td>65</td>
<td>86</td>
</tr>
</tbody>
</table>

Increase of 29% in heat flow due to correction.
Deep saline aquifers

A geothermal resource calculation for the deep saline aquifers requires

- A geological model of the aquifer (reservoir)
- Maps of the temperature field distribution across and within the aquifer
- Estimates of the hydraulic properties of the aquifer, especially porosity

Permeable, porous rocks are mainly found at depth in the Mesozoic basins. Five main basins in the UK;

- Northern Ireland
- East Yorkshire and Lincolnshire
- Cheshire
- Worcester
- Wessex

Main aquifers Sherwood Sandstone Group (SSG) and Permian Sandstones.
Deep saline aquifers

Geological models, Cheshire Basin

Top of Sherwood Sandstone Group

Base of Permian sands
Deep saline aquifers

Temperature models

Observed temperatures from UK Geothermal Catalogue.

Calculated temperature field assuming 1-D steady state conductive heat transfer with heat production. Requires models of structure, heat flow, thermal conductivity.
Deep saline aquifers

Calculated temperatures, Cheshire Basin

Calculated temperature models at the top and base of the principal aquifer formations in the Cheshire Basin.
Deep saline aquifers

Porosity has been derived from sonic, neutron and formation density geophysical logs and laboratory measurements.

The geothermal resource is the total heat in place (Ho) based on a simple volume model

\[Ho = [\phi \delta_f c_f + (1-\phi)\delta_m c_m] V(T_r - T_0) \]

Where
\(\phi = \) fractional porosity
\(\delta_f = \) density of pore fluid Mg m\(^{-3}\)
\(c_f = \) specific heat of fluid J g\(^{-1}\) °C\(^{-1}\)
\(\delta_m = \) density of matrix Mg m\(^{-3}\)
\(c_m = \) specific heat of matrix J g\(^{-1}\) °C\(^{-1}\)
\(T_0 = \) temperature of ground surface °C
\(V = \) volume of reservoir m\(^3\)
\(T_r = \) temperature of reservoir °C

The Identified Resource represents that part of the Geothermal Resource which might be available for development and is related by a function of the hydraulic properties of the aquifer and the method of abstraction (F) and the reject temperature of the disposal fluid (Tj).

\[Io = Ho.F(T_r - T_j)/(T_r - T_0) \]

Empirical studies (Paris Basin) suggest F = 0.33 for a doublet and 0.1 for single well abstraction. For the data here Tj = 25 °C, F = 0.33; resource calculations only for reservoir temperatures in excess of 40 °C.
Deep saline aquifers

Geothermal resources, Cheshire Basin

The resources are concentrated in the south east of the basin against the main bounding fault and are centred on Crewe.
Geothermal resources

Geothermal resources for the four main sedimentary basins on the UK mainland, based on the 1995 update.

Northern Ireland not shown.
Resources above 40 °C

Summary of UK Low Enthalpy Geothermal Resources 10^{18} J

<table>
<thead>
<tr>
<th>Basin Resource</th>
<th>Aquifer</th>
<th>km²</th>
<th>G-Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>East England</td>
<td>SSG Triassic</td>
<td>4827</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Wessex</td>
<td>SSG Triassic</td>
<td>4188</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Worcester</td>
<td>SSG Triassic</td>
<td>500</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BS Permian</td>
<td>1173</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Cheshire</td>
<td>SSG Triassic</td>
<td>677</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BS Permian</td>
<td>1246</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>N Ireland</td>
<td>SSG Triassic</td>
<td>1618</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Identified Resources for a reject temperature of 25 °C and a recovery factor of 0.33. SSG Sherwood Sandstone Group; BS Bridgnorth Sandstone; CS Collyhurst Sandstone. 200M barrels oil = 1.2 EJ (EJ = 10^{18} J)
Fluid characteristics

<table>
<thead>
<tr>
<th>Well</th>
<th>Depth</th>
<th>Thick</th>
<th>Dm</th>
<th>T °C</th>
<th>l/s</th>
<th>g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marchwood</td>
<td>1666-1725</td>
<td>59</td>
<td>4</td>
<td>74</td>
<td>30</td>
<td>103</td>
</tr>
<tr>
<td>Southampton</td>
<td>1729-1796</td>
<td>67</td>
<td><4</td>
<td>76</td>
<td>20</td>
<td>125</td>
</tr>
<tr>
<td>Larne</td>
<td>968-1616</td>
<td>648</td>
<td>7</td>
<td>40</td>
<td>-</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>1823-2264*</td>
<td>441</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><1</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleethorpes</td>
<td>1100-1498</td>
<td>387</td>
<td>>60</td>
<td>60</td>
<td>20</td>
<td><80</td>
</tr>
<tr>
<td></td>
<td>1865-1891*</td>
<td>26</td>
<td><2</td>
<td>64</td>
<td>-</td>
<td>220</td>
</tr>
<tr>
<td>Prees</td>
<td>1932</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>12#</td>
</tr>
<tr>
<td></td>
<td>2889*</td>
<td>-</td>
<td>-</td>
<td>77</td>
<td>-</td>
<td>50#</td>
</tr>
<tr>
<td>Kempsey</td>
<td>2310*</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>26</td>
</tr>
</tbody>
</table>

Triassic sandstones except * Permian sandstones # estimate

Fluids are Na-Cl brines with Na/Cl > seawater and Ca enriched

(Seawater salinity 35 g/l)
Summary

- There is a huge data resource available for deep geothermal including geological, geophysical, geochemical, borehole and temperature data.
- Much work has been done to deduce the subsurface distribution of granitic rocks. The granites of southwest England are the most prospective, but further investigations are needed in northern England and Scotland.
- A considerable resource has been quantified for the deep saline sedimentary aquifers.