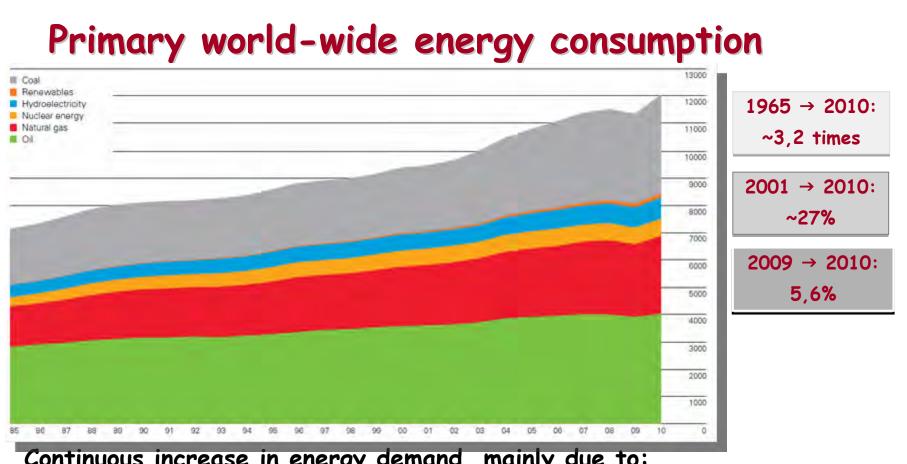


Project GEOELEC "Develop Geothermal Electricity in Europe to have a renewable energy mix" - Regional Workshop: SE Europe *CRES, Athens, December 20, 2011*

Current Status and Prospects for Geothermal Electricity in Europe

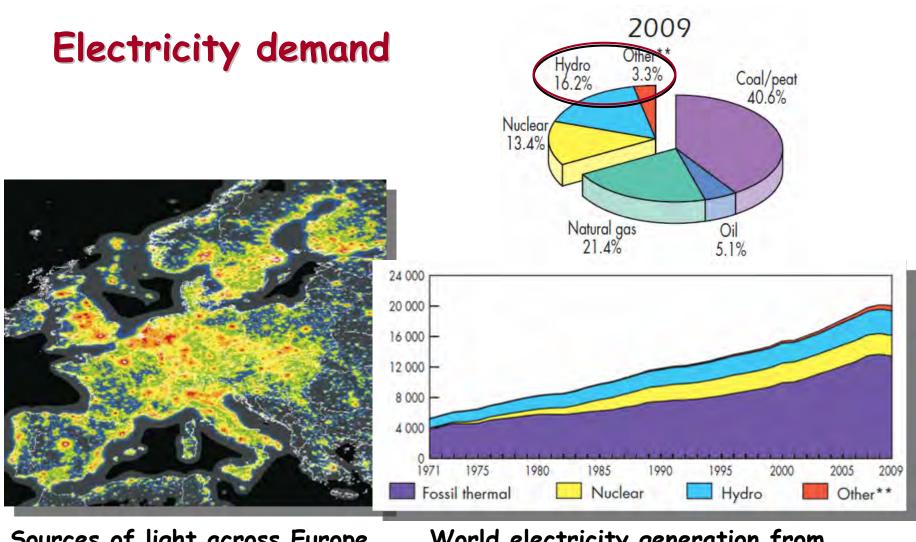

N. Andritsos Dept. Mechanical Eng., Univ. of Thessaly

Introduction

This presentation is mainly based on :

- (1) Papers presented at the *World Geothermal Congress 2010*, Bali, Indonesia, April 2010.
- (2) Papers, presentations, brochures by R. Bertani, B. Sanner, M. Antics, E. Knapek, EGEC and others

(3) Data by Eurostat, IEA, REN21, BP etc.


Continuous increase in energy demand, mainly due to:

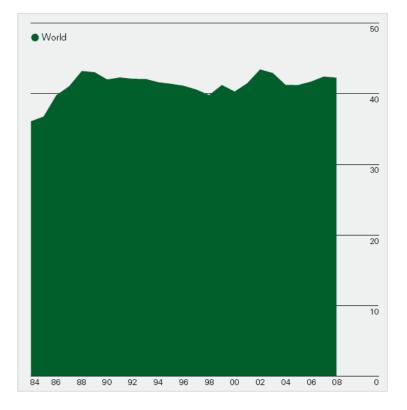
1)Economic growth,

2) Population growth (7 billion, end of October 2011)

Conventional fuels dominate.

Source: BP statistical review, 2011

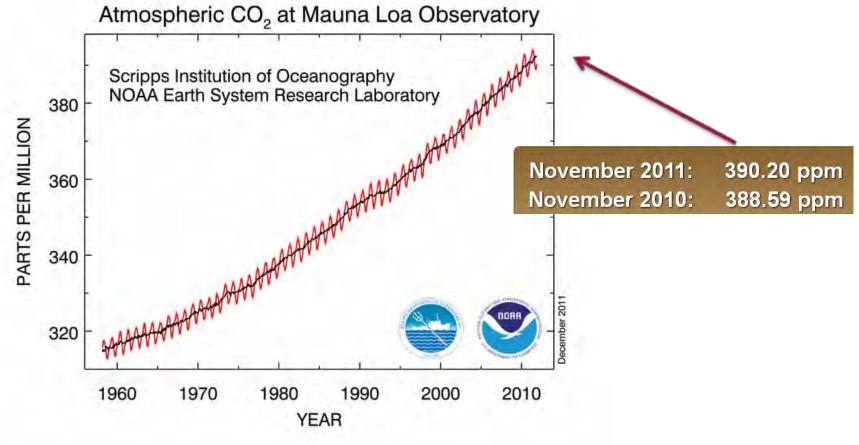
Sources of light across Europe


Source: Cinzano et al, Mon. Not. R. Astron. Soc. 328, 689-707 (2001)

World electricity generation from 1971 to 2009 by fuel (TWh)

Source: IFA

Energy resources and supply


- Coal, oil and gas are still the dominant players on the energy market.
- Increasing contribution is observed from hydro-energy, new RES and nuclear energy.
- Conventional resources are limited and will be depleted in the near future or it will become more expensive to retrieve them.

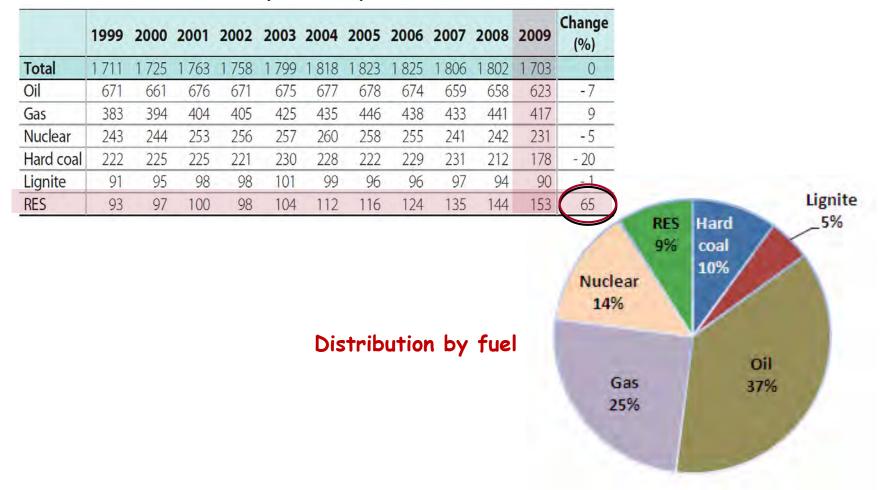
Reserves-to-production (R/P) ratio for oil

Source: BP statistical report 2009

Trends in Atmospheric Carbon Dioxide (global warming)

Source: http://www.esrl.noaa.gov

Other Problems: energy dependence

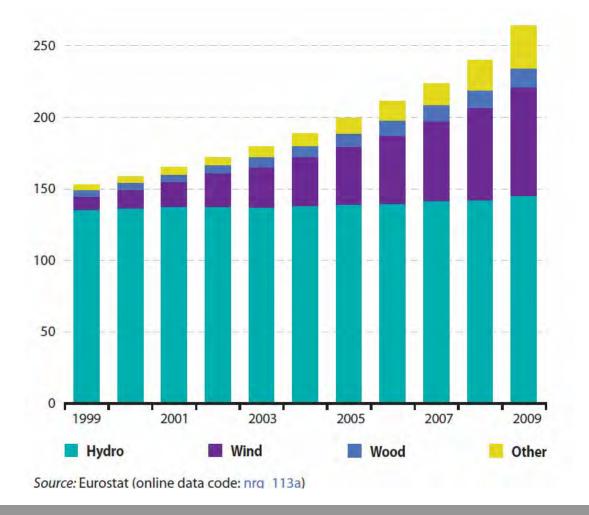

- The EU is the world's largest energy importer, relying on imports for 54% of its energy needs in 2009. More specifically for the S-E Europe:
- 🛚 Bulgaria: 45%
- 🧶 Greece: 🛛 68%
- FYROM: 44%
- 🧶 Malta: 100%
- 🧶 Romania: 🛛 20%
- 🜒 Turkey: 70%

Solution

Major substitution of conventional sources by renewable energy sources and GEOTHERMAL ENERGY may play a significant role.

Energy consumption in EU-27

Gross inland consumption, by fuel, EU-27 (Mtoe) b/w 1999-2009



Source: EUROSTAT Pocketbook, "Energy, transport and environment indicators", 2011 ed.

Energy consumption in selected SE-Eu countries Distribution by fuel in 2009 Hard coal 1% RES 6% ard coal 11% Gas Greece Lignite 11% Nuclear Bulgaria 27% 22% Lignite 25% Gas Oil 12% Oil 55% 24% Hard coal 3% RES RES 10% Hard coal 15% Lignite 15% Romania 17% Turkey Nuclear Lignite Gas 9% 16% 29% Oil Oil 26% Gas 30% 30%

Source: EUROSTAT Pocketbook, "Energy, transport and environment indicators", 2011 ed.

Installed capacity for electricity generation from renewables, EU-27 (GW)

The "20-20-20" targets by EU

To limit global warming to 2°C, global emissions of greenhouse gases will need to stop increasing within 10 to 15 years and then be cut to around half of 1990 levels by 2050.

Overall '20-20-20' goal for the Community

- A reduction in EU greenhouse gas emissions of at least 20% below 1990 levels
- 20% of EU energy consumption to come from renewable resources
- A 20% reduction in primary energy use compared with projected levels, to be achieved by improving energy efficiency.

Definitions according to EU Directive 2009/28/EC

The following definitions also apply:

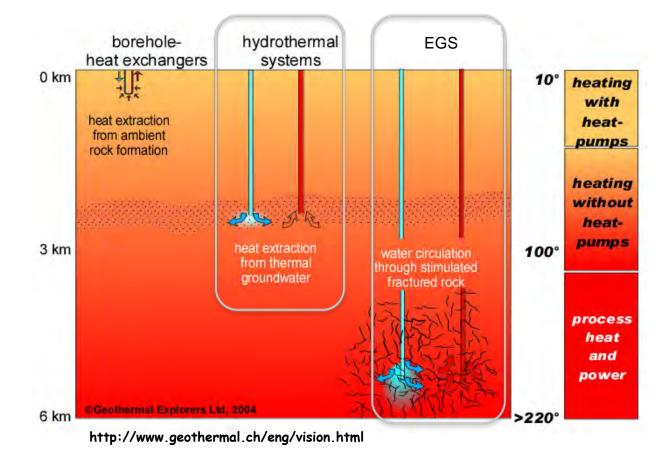
- (a) 'energy from renewable sources' means energy from renewable non-fossil sources, namely wind, solar, aerothermal, geothermal, hydrothermal and ocean energy, hydropower, biomass, landfill gas, sewage treatment plant gas and biogases;
- (b) 'aerothermal energy' means
- (c) 'geothermal energy' means energy stored in the form of heat beneath the surface of solid earth;

Geothermal Energy & Strategy in Europe

Geothermal energy development in Europe:

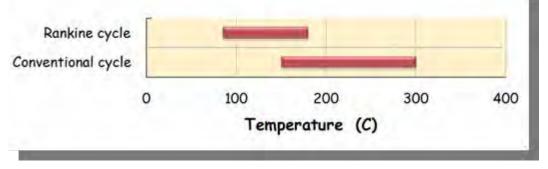
- In line with overall strategy for sustainable development in Europe.
- In line with addressing growing demand for energy.
- In line with reduction of CO₂ emissions to limit global warming ("20-20-20" strategy)
- In line with strategy for reducing energy dependency.

Benefits of Geothermal Electricity


- It is a renewable and a sustainable energy source.
- It generates continuous and reliable power at a low operational cost.
- It provides clean and safe energy.
- It requires the smallest land among RES.
- It mitigates energy dependence.
- Most of technology to exploit it known from Oil & Gas drilling and transport.

Problems

Site specific and high installation cost.

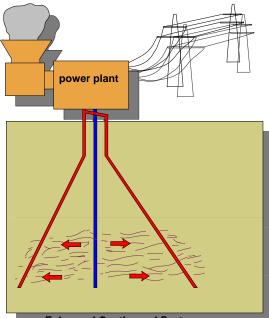

Systems of Heat Extraction for g/t electricity

- Hydrothermal systems
- Enhanced geothermal systems (EGS)

Types of Geothermal Energy Plants

- Commercial geothermal power generation is an established industry.
- The first commercial geothermal plant in 1914 at Larderello.
- There are basically three types of geothermal plants used to generate electricity.
 - (a) direct steam
 - (b) flash steam
 - (c) binary plant
 - + Hybrid

- The type of plant is determined primarily by the nature of the geothermal resource.
- Geothermal binary power plants have gained increasing interest in the recent years (also in relation to EGS)


Enhanced Geothermal Systems

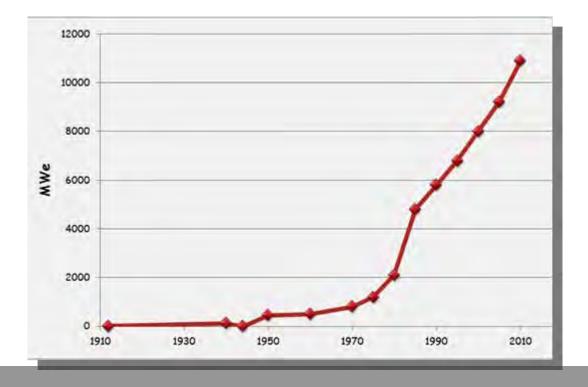
- U.S. Department of Energy: Enhanced Geothermal Systems (EGS) are engineered reservoirs that have been created to extract economical amounts of heat from low-permeability and/or porosity geothermal resources.
- The future commercialization of EGS depends on solving technical and economic issues.
- A major barrier are the costs of drilling the wells, the supply of water and the pumping of the produced hot water.
- EGS work is based on the concept outlined in a patent issued to the Los Alamos National Lab in 1974.
- Upper 10 km of crust in US has 600,000 times annual US energy (USGS)

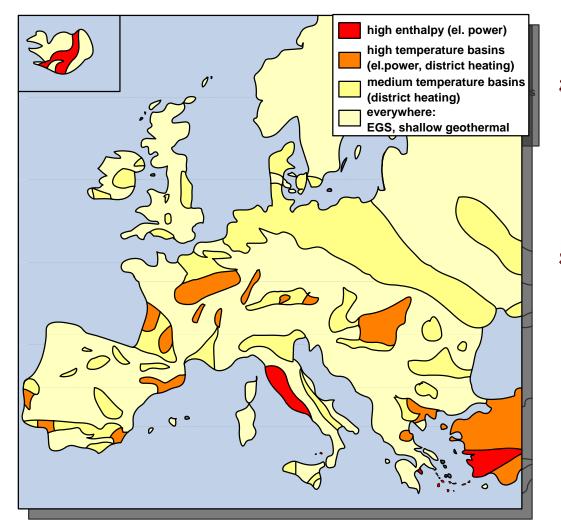
Tester et al, MIT, 2006

Enhanced Geothermal Systems

Enhanced Geothermal System Enhanced Geothermal System

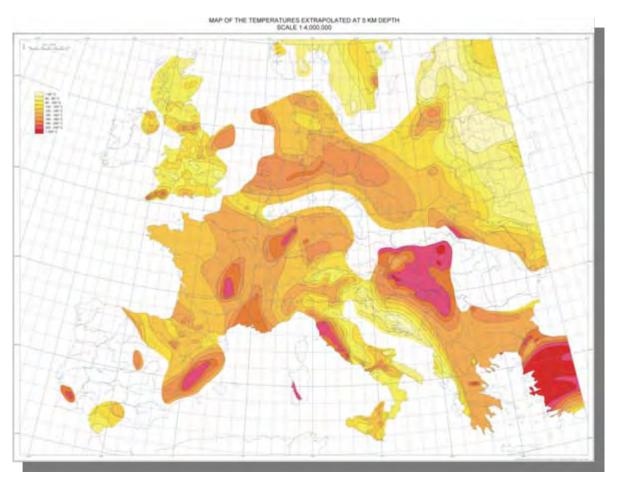
Principle of EGS system for geothermal power production Interesting and challenging European research project at Soultz-sous-Forêts, France (5 km, 200°C, 100 I/s, 6 MWe)


ARLERU

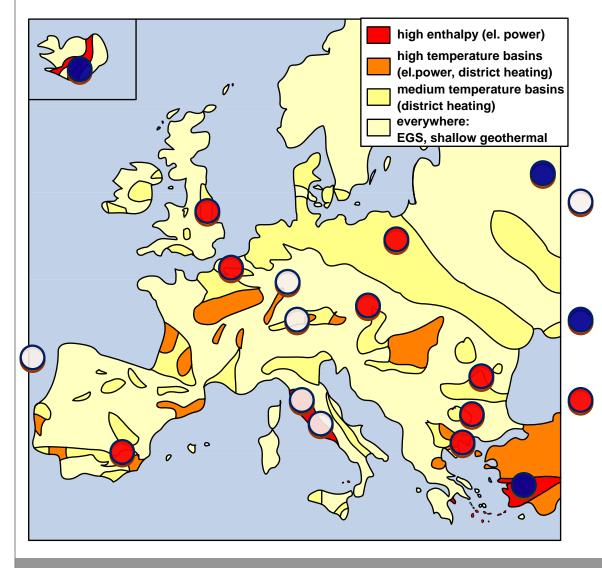

Drilling rig at the European R&D site Soultz-sous-Forêts

Geothermal power generation in the world (2010)

- 24 countries now generate electricity from geothermal resources
- The total installed capacity worldwide: 10,898 MW
- Top 5 countries: USA, Philippines, Indonesia, Mexico and Italy.


Geothermal Potential in Europe

*Europe has significant geothermal resources both in volcanic and sedimentary basin environment.


The map shows the main basins and high-enthalpy geothermal areas.

Geothermal Potential in Europe

Map of temperatures extrapolated at 5 km depth

Geothermal Electricity Generation in Europe

The map shows the sites of geothermal electricity generation.

EU-27: Italy, France (overseas), Portugal (Azores), Germany, Austria

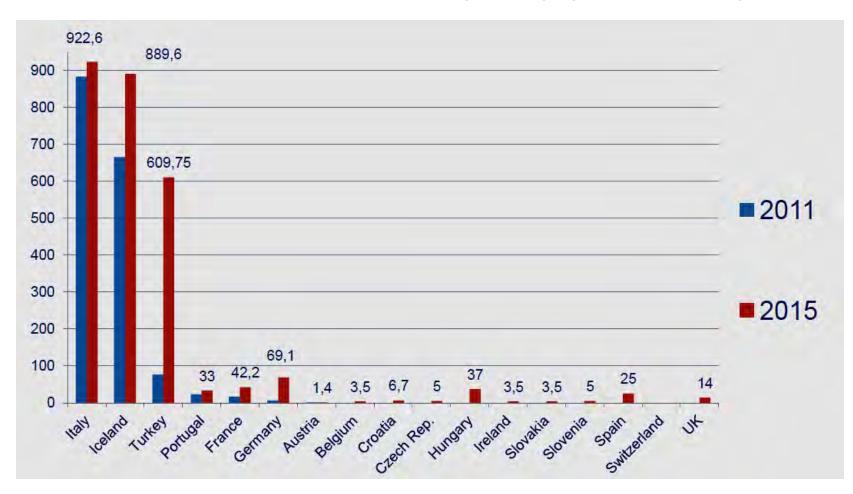
Other: Iceland, Turkey, Russia

Possible Newcomers:

Greece, Poland, UK, Hungary, Slovakia, Romania, Spain, the Netherlands

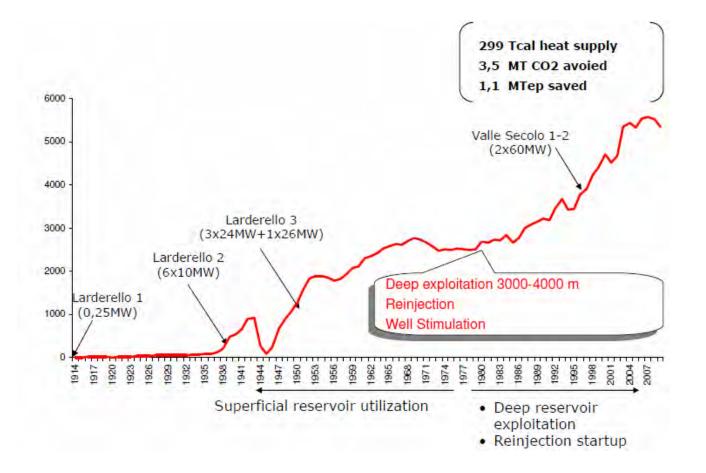
Geothermal Electricity in EU (Bertani, 2011)

	Capacity installed 2010 (MW)	Expected Capacity 2015	Geothermal resources	
Italy	843	923	High/Low	
Portugal	29	60	High	
France*	17,4	35	High	
Germany	6,6	15	Low	
Austria	1.4	5	Low	
Greece		30	High/Low	
Spain		40	Low	
Czech Re.		5	Low	
Romania		5	Low	
Slovakia		5	Low	
Netherlands		5	Low	
Poland		1	Low	
Total	897,5	1134		

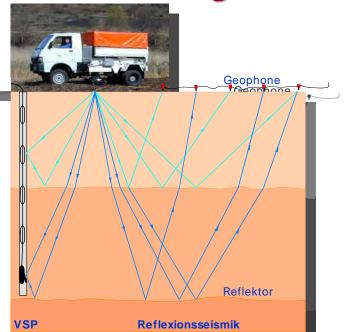

*Overseas departments included

Geothermal Electricity in other European countries (Bertani, 2011)

	Capacity installed 2010 (MW)	Expected Capacity 2015	Geothermal resources
Iceland	573	800	High
Turkey	87	206	High/Low
Russia	82	194	High
Total	742	1200	


Currently 59 plants in Europe (47 in EU-27)

Installed and forecasted Capacity per Country

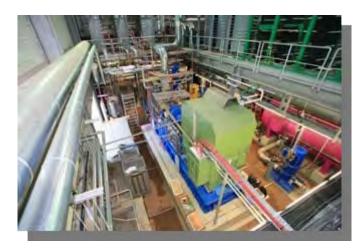

Source: J.P. Gibaud, Launch of the EGEC Deep Geothermal, 2011

History of Italian Production

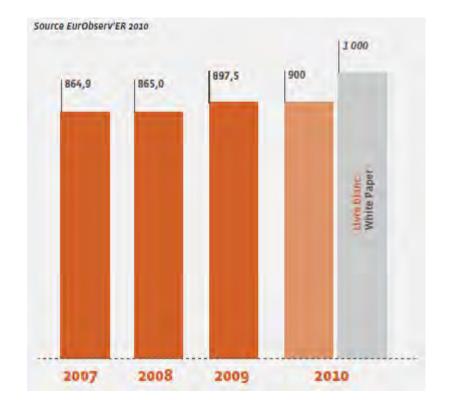
Geothermal CHP: The Case of Unterhaching

- A city of 22000 inhabitants, SW of Munich
- 1998: Analysis of energy consumption, basis for RES planning (solar, biomass, geothermal)
- 2001: Decision to proceed with the geothermal project.
 - Some difficulties with the authorities in Bavaria, where 60% of electricity coming from nuclear energy.
 - Start with seismic exploration
 - Borehole design (plan for 26 MW)
- 2004, Sept. 24: completion of borehole 1 (150 l/s, 123°C, vertical depth 3.350 m)
- 2007, Jan. 17: completion of borehole 2 (>150 l/s, 133°C, vertical depth 3.580 m, much better injectivity)

Source: Dr. E. Knapek, Feb. 2011


Geothermal CHP: The Case of Unterhaching (II)

- Power generation: Base load 125 l/s
- Kalina cycle (NH₃+water: 85%-15%)
- Cost of 2 wells: € 20 mil.
- Start: summer 2008

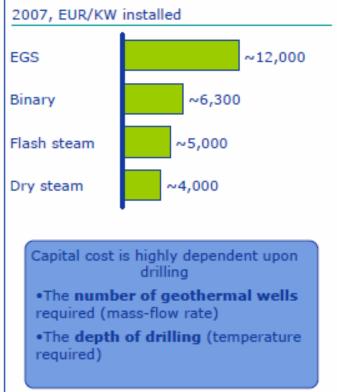

In 2010

- Heat power demand at the customer's side: 46,5 MW
- Peak of necessary geothermal power: 26 MW
- Peak electrical power: 2.9 MW
- Electricity price: 230 €/MWh (constant for 20 years)

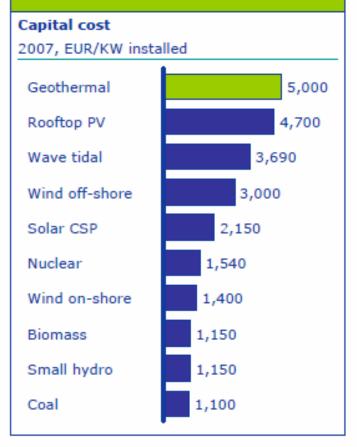
Geothermal Electricity in EU

Comparison of current trend with White Paper objectives for geothermal electricity production in MW_e (10th EurObserv'ER Report, 2011)

Cost Factors


- Temperature and depth of resource
- Type of resource (steam, liquid, mix)
- Type of g/t systems (hydrothermal, EGS)
- Available quantity of resource
- Chemistry of resource
- Permeability of rock formations
- Size and technology of plant
- Infrastructure (roads, transmission lines)

Modified, http://www.worldbank.org/html/fpd/energy/geothermal/cost_factor.htm


Capital costs for Geothermal & other plants

Costs for geothermal are site specific and differ by technology...

Capital cost

...and do not yet compare well to nonrenewable technologies

Source: R. Bertani, 2011

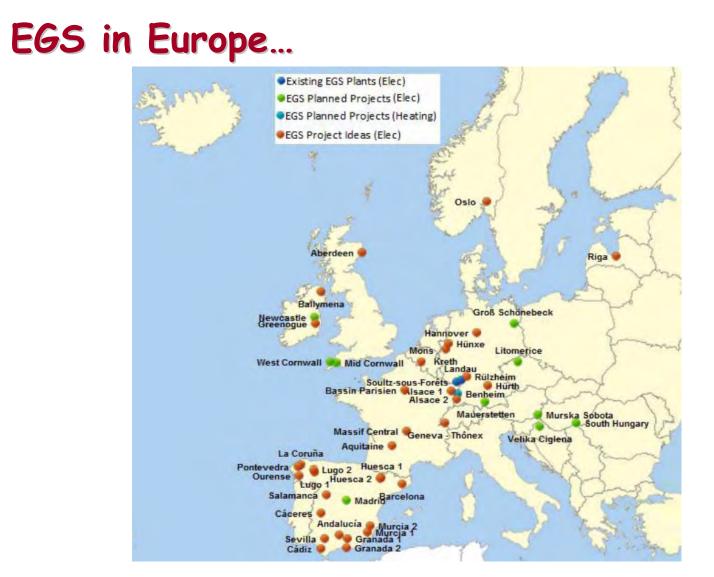
Geothermal Power Capital Costs by Project Development Phase (2004 US\$)

Table 2.6: Geothermal Power Capital Costs by Project Development Phase (2004 US\$)

ltem	200 kW Binary Plant	20 MW Binary Plant	50 MW Flash Plant 240	
Exploration	300	320		
Confirmation	400	470	370	
Main Wells	800	710	540	
Power Plant	4,250	2,120	1,080	
Other	1,450	480	280	
Total	7,200	4,100	2,510	

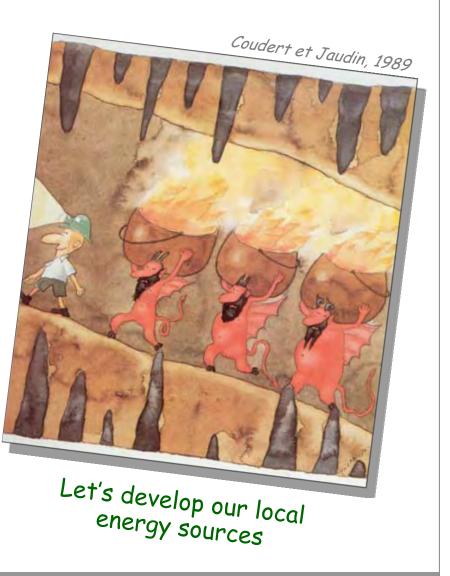
Source: ESMAP Technical Paper 121/07, December 2007

Future of Geothermal Electricity in EU


According to EGEC

- Geothermal energy can substantially contribute electricity production, with ~20% of the total EU consumption
- By 2020: Strengthening the European geothermal industry by developing hydrothermal resources in Europe and expanding the EGS concept,
- By 2030: Towards a competitive source of energy by bringing down EGS plant cost, and transferring EGS technology outside Europe.
- By 2050: Powering Europe and the world from geothermal with EGS developed everywhere at a competitive cost, replacing conventional base-load power plants (coal, nuclear, fuel, etc.)

Future of Geothermal Electricity in EU


Table 1 Geothermal Electricity and Heating & Cooling up to 2050

Geothermal Electricity - EU-27	2010	2020	2030	2050
Electricity conventional (MWe)	990	1,500	7,000	10,000
Electricity EGS (MWe)	10	4,500	15,000	90,000
Total Installed Capacity (MWe)	1,000	5,000	20,000	100,000
Yearly Electricity Production (TWh)	8	50	234	780
Heating & Cooling - EU-27 (Mtoe)	2010	2020	2030	2050
Geothermal Heat Pumps	2.3	6	12	70
Geothermal Direct uses	1.8	2.5	6	20
Heating from CH&P	0.2	2	12	60
Total Heat and Cold Production	4.3	10.5	30	150

Source: J.P. Gibaud, Launch of the EGEC Deep Geothermal, 2011

Thanks for your attention!

