

A Methodology for Resource assessment and application to core countries

Writing team:

Jan-Diederik van Wees, Thijs Boxem (TNO) Phillipe Calcagno, Chrystel Dezayes (BRGM), Christian Lacasse (Mannvitt), Adele Manzella (CNR)

WEBGIS and resource assessment: J.D. Van Wees, T. Boxem, J. Limberger, M. Pluymaekers

Integrated over volume V

Practical potential

Realistic Technical Potential [MW]

UR2=1-2%

Theoretical Technical Potential [MW]

UR1=12.5%

Theoretical Capacity [PJ/km2]

(energy which theoretically be used for an application

TPvolume = $\frac{TC}{lifetime}UR2$

TPplaylevel = $\frac{TC}{lifetime}UR1$

 $TC = V * \rho_{rock} * Cproc_k * (T_x - Tr) * \eta$

Theoretical potential

Beardsmore et al., 2011. philosophy used In IPCC and IEA roadmap

Practical potential

Economic potential

Realistic Technical Potential [MW]

TPvolume = $\frac{TC}{lifetime}$ UR1, if LCOE < c

Theoretical Technical Potential [MW]

UR1=12.5%

TPplaylevel = $\frac{TC}{lifetime}UR1$

Theoretical Capacity [PJ/km2]

(energy which theoretically be used for an application

 $TC = V * \rho_{rock} * Cpr_{ock} * (T_x - Tr) * \eta$

Theoretical potential

Used here

Economic potential

Realistic Technical Potential [MW]

Tplcoe_c [MW/km2] = TP, if LCOE<c

Theoretical Technical Potential [MW]

R=12.5%

TP[MW/km2] = 1.057* TC* R

Theoretical Capacity [PJ]

(energy which theoretically be used for an application)

 $TC [PJ/km2] = 2z_{\rho_{rock}} C_{rock} (T_x - Tr)\eta \ 10^{-9}$

HIP [PJ]

(heat in place)

HIP $[PJ/km2] = 2z_{\rho_{rock}} C_{rock} (T_x - Ts) 10^{-9}$

Theoretical potential

parameter	Name	Unit		
HIP	Heat in place	PJ/km2		
TC	Theoretical capacity	PJ/km2		
TPtheory	Theoretical Technical Potential (R=1)	MW/km2		
TPbm	Technical Potential according to Beardsmore et al., 2010 (R=0.01)	MW/km2		
TPreal	Technical Potential (R=0.125)	MW/km2		
TPIcoe_c	Economic Technical Potential (LCOE <c) C=50,100,150,200 €/MWh</c) 	MW/km2		
LCOE_c	Minimum Levelized Cost of Energy	€/MWh (electricity)		
DEPTHLCOE_c	Minimum depth of LCOE_c	km		

Levelized Cost of Energy

- Discounted energy produced [MWh, GJ]
- Discounted cash out [EUR]
- LCOE = discounted cash-out / discounted energy produced

Do we have access to key information? Temperature compilations date from over 20 years ago, only exists in a paper report

Data acquisition sheets

Data acquisition sheets

Data acquisition sheets

Can stakeholders access key information? Legislation to access key information differs. In many countries temperature measurements are not public

- •14 countries have indicated that temperature measurements are publically available at no cost
- •Access is hampered by lack of digital data repositories in most countries

Data acquisition sheets

Temperature maps at depth

Data acquisition sheets

3D temperature models

Findings

- There are a lot of geothermal data available, however:
 - Fragmented
 - Different format
 - Different correction methods used for BHT
 - Different methodology construction of maps
- Centralised and unified database recommended

10km depth

How to construct a temperature model?

Surface temperature T at 1000 m T at 2000 m Thermal properties: K = Thermal conductivity [W /m K] A = radiogenic heat production [μ W / m3]

Natural heat flow

Boundary conditions Mean Annual Surface Temperature

Boundary condition at Base --> Surface Heat Flow

Populating model with thermal properties (cf. beardsmore, 2011) Sediment Thickness

Populating model with thermal properties (cf. Cloetingh et al., 2012)

Depth of the Moho

2.000 km

Geothermal Reservoir

Geothermal energy:

EGS

GPK4 GPK3 GPK2

Conventional: 2% worldwide electricity 2050

5% RE NL 2020

Enhanced geothermal systems (EGS):

2% worldwide electricity 2050

G. Zimmermann, A. Reinicke / Geothermics 39 (2010) 70-77

Calculation of LCOE of renewable heat and electricity							
Geothermal Energy			Operationa	al choice	power		
3 3 3 3 3 3 3 3 3 3			O P O · O · O · O · O · O · O · O · O · O ·	1 0	pons.		
INPUTVARIABLES	used	Value	Unit	Comment	.1	'	
Flowrate	1	50	L/s	total flow rate which is	achieved from the subsurface (mea	asured at surface conditions)	
along hole depth of a single well	1	5000	m	along hole depth (total length) of a single borehole in the subsurface			
Surface temperature	1	11	С	average yearly surface temperature			
production temperature (Tx)	1	166	С	production temperature (reservoir temperature, corrected for temperature losses)			
Economic lifetime	1	15	Years	lifetime for cash flow calculations			
subsurface							
well cost scaling factor	1	1.2	-	scaling factor for calcu	ulating well costs		
well costs	1	11	mln euro/Well	calculated costs for drillling the wells			
Stimulation and other Cost	1	1	mln euro/Well	additional well costs for stimulation (and other costs) of the reservoir			
Pump investment	1	0.6	MIn euro/pump	pump investements. Workover is assumed every 5 years at installment costs			
Number of wells	1	2	-	number of wells in the reservoir			
subsurface capex	1	23.6	mln euro	calculated subsurface capex for wells, stimulation and pumps			
subsurface parasitic							
COP	1	15	-	coefficient of performa	nce (MWth/MWe) to drive the pump	os. Ratio of thermal and electric power	
electricity price for driving the pumps	1	110	euro /MWhe	electricity price for the power consumed by the subsurface pumps			
Variable O&M	1	7.333333333	euro/MWhth	calculated variable O&	M per unit of heat produced (1MW)	nth=3.6GJ)	
power temperature range used							
(co) heat relative starting temperature	0		%		Tx,0%=Tbase) for upper limit of tem	perature range for heat	
outlet temperature power plant (Toutlet)	1	91	С	upper limit of Tempera	ature for (co)heat use		
power surface facilities							
thermal power for electricity	1	17.181	MWth			ency recorded by operating binary and	
electric power		2.209	MWe			ency recorded by operating binary and	
power Loadtime power Plant investment costs	1	8000 2.000	hours/year mln Euro/MWe		a year for electricity production		
•	1			costs for power conver	•		
power Distance to grid	1	5000	m (1)		ection to the power grid		
power Grid investment power Grid Connection Variable	1	80 100	Euro/kWe Euro/m	grid connection cost p	per unit of power installed		
power plant capex	1	5.095	mln Euro		over unit of distance bower plant and grid connection		
power Fixed O&M rate	1	5.095 1%	//////////////////////////////////////		itage of caclulated capex for (sub)si	urface facilities	
power Fixed O&M	1	29	kEuro/MWe		s per unit of power installed	ando idollitico	
power Variable O&M	1	57.0344086	Euro/MWhe		kM costs (dependent on COP, and	efficiency of conversion)	
					, , , , , , , , , , , , , , , , , , , ,	, , ,	

(co)heat surface facilities					
direct heat reinjection temperature(Treinject)	0	40	С	reinjection temperature (effective temperature range is ToutletTreinject)	
direct heat production	0	0.000	MWth	heat production	
direct heat load hours	0	5500	hours/year	effective load hours in a year for heat production	
direct heat plant investment costs	0	150.000	kEuro/MWth	heat surface installation costs per unit of heat production	
direct heat capex	0	0.00	mln Euro	calculate capex for heat production surface facilities	
direct heat Fixed O&M rate	0	3%	%	O&M costs as percentage of caclulated capex for (sub) surface facilities	
direct heat Fixed O&M	0	59	kEuro/MWth	calculated O&M costs per unit of heat production installed	
direct heat Variable O&M	0	7.333333333	Eur/MWHth	calculated variable O&M costs (dependent on COP)	
complementary sales					
complementary electricity sales	1	0.00	Euro/MWh	complementary revenues from electricity sales	
complementary heat sales	1	0	euro/GJ	complementary revennues from heat sales	
fiscal stimulus					
fiscal stimulus on lowering EBT	1	yes	yes/no	apply fiscal stimulus on lowering earnings before tax (EBT) of the project developer	
percentage of CAPEX for fiscal stimulus	1	42%	%	percentage of CAPEX which can be deducted from EBT	
legal max in allowed tax deduction	1	63	mIn Euro	legal maximum in tax benefit	
NPV of benefit to project	1	2.8	mln Euro	effective benefit to project	
Inflation	1	3%	%	inflation for costs and benefits in project cash flow	
loan rate	1	6.0%	%	interest rate on debt	
Required return on equity	1	15%	%	required return on equity	
Equity share in investment	1	20%	%	share of equity in the effective investment	
Debt share in investment	1	80%	%	share of debt(the loan) in effective investment	
Tax	1	25.5%	%	tax rate for company	
Term Loan	4	4.5	Year	annah an af maana fan tha laan	
	1	15 30		number of years for depresiation (linear per unit of production)	
Depreciation period	1	30	Year	number of years for depreciation (linear per unit of production)	
POWER (power,co-heat)	used	Value	Unit		
levelized cost of energy (LCOE)	1	267.48	Euro/Mwhe		
levelized cost of energy (LCOL)	'	207.40	Luio/iviwiie		
HEAT SHEET (heat)		Value	Unit		
levelized cost of energy (LCOE)	0	0.00	Euro/GJ		
, (====,			1MWhth=3.6GJ		
				· · · · · · · · · · · · · · · · · · ·	

Sensitivity Analysis LCOE: upper rhine Graben

Minimal LCOE EGS 2020

Assumptions:

- Doublet
- COP = 50
- Tmin = 100°C
- Flow rate = 70 l/s
- Welcost scaling = 1.5
- Zmax = 7km
- Stimulation costs = 20M euro

Assumptions:

- Doublet
- COP = 1000
- Tmin = 100°C
- Flow rate = 100 l/s
- Welcosts = €1.500/m
- Zmax = 10km
- Stimulation costs = 20M euro
- Carnot efficiency = 70%